If x + y=6 , y + z=11 and x + z=9 and xy + yz + zx=50 then find the value of x2 +y2 + z2.
Answers
Answer:
(x + y) + (y + z) + (x + z) =11+6+9
2(x + y + z) = 26
2x +2y +2z =26
Answer :
If x + y = 6, y + z = 11 and x + z = 9 and xy + yz + zx = 50, then the value of x² + y² + z² is 69.
Step-by-step explaination :
According to the question :
➟ x + y = 6 . . . . . ⑴
➟ y + z = 11 . . . . . ⑵
➟ x + z = 9 . . . . . ⑶
➟ xy + yz + zx = 50
We shall find the value of :
➟ x² + y² + z²
Now, let’s add ⑴, ⑵ and ⑶ to get x + y + z :
➟ (x + y) + (y + z) + (z + x) = 6 + 11 + 9
➟ x + x + y + y + z + z = 26
➟ 2x + 2y + 2z = 26
➟ 2 (x + y + z) = 26
➟ x + y + z = 26/2
➟ x + y + z = 13
We know the algebraic identity :
➟ (x + y + z)² = x² + y² + z² + 2 (xy + yz + zx)
Let’s substitute the values given and find x² + y² + z² :
➟ (13)² = x² + y² + z² + 2 (50)
➟ 169 = x² + y² + z² + 100
➟ 169 – 100 = x² + y² + z²
➟ 69 = x² + y² + z²
Therefore, the value of x² + y² + z² is 69.