if x+y=7 and xy=10 then the value of (1/x^3+ 1/y^3) is
Answers
⠀⠀ || ✪ ϙᴜᴇsᴛɪᴏɴ ✪ ||
if x+y=7 and xy=10 then the value of (1/x^3+ 1/y^3) is ?
⠀⠀ || ✪.ANSWER.✪ ||
Given:-
- x + y = 7 .............(1)
- xy = 10 ................(2)
Find:-
- value of 1/x³ + 1/y³
|| ✪.Explanation.✪ ||
we know,
★ x - y = √[(x+y)²-4xy]
So,keep value by equ(1) and equ(2)
➥ x - y = √[(7)²-4.10]
➥ x - y = √[49-40]
➥x - y = √9
➥x - y = 3 ............(3)
Add equation(1) and equation(2),
➥ 2x = 10
➥ x = 10/2
➥x = 5
Keep value in equ(1),
➥ 5 + y = 7
➥y = 7 - 5
➥ y = 2
Thus:-
- Value of x = 5
- Value of y = 2
|| ✪.verification.✪ ||
Keep value of x and y in equ(1),
➥ x + y = 7
➥ 5 + 2 = 7
➥ 7 = 7
L.H.S. = R.H.S
That's proved
Now, find
➥ 1/x³ + 1/y³
Keep value of x and y
= 1/5³ + 1/2³
= 1/125 + 1/8
= ( 8 + 125)/(125×8)
= 133/1000 [Ans]
⠀ ⠀⠀ ⬛⠀ ...Given...⠀⬛⠀
- x + y = 7 ____ eq 1
- x × y = 10 ____eq 2
⠀ ⠀ ⠀ ⬛⠀...To find...⠀⬛
✏ The value of
⠀⠀ ⠀⬛⠀... Solution...⠀⬛
✏ we know that...
✰✰ x - y = √[ (x + y)² - 4xy ]
So...
keep values by eq 1 & eq 2...
✏ x - y = √[ (7)² - 4.10 ]
✏ x - y = √[ 49 - 40 ]
✏ x - y = √9
- ✏ x - y = 3 _____ eq 3...
✰✰ Now, Add equation 1 & equation 2...
✏ 2x = 10
✏ x = 10/2
- ✏
Substituting the value of x in eq 1...
✏ 5 + y = 7
✏ y = 7 - 5
- ✏
Thus...
✰✰ Value of x = 5
✰✰ Value of y = 2
Now, we have to find...
✏
Substituting values of x and y...
✏
✏
✏
✏ ⠀⠀⠀
________extra________
Substituting values of x and y in equation 1...
✏ x + y = 7
✏ 5 + 2 = 7
✏ 7 = 7
L.H.S. = R.H.S
❗Hence proved❗