If x+y=8 and 2^x+2^y=40,then find x,y
Answers
Answered by
7
Answer:
y= 5 & y = 3
x= 3 & 5
Step-by-step explanation:
x+y= 8 ------(I) & 2^x+ 2^y = 40--------(II)
x+y = 2^3 or x= 2^3 - y
from (II)
2^(2^3-y) + 2^y =40
2^2^3/2^y + 2^y = 40
2^8/2^y + 2^y = 40
or 256 +( 2^y}^2 = 40* 2^y
let 2^y = a
so 256 + a^2 = 40 a
a^2 - 40 a + 256 =0
a=[40 +_sqrt{40^2 - 4*256)]/2
=[40 +_ 24]/2
= 20+_ 12
so a= 32 & a= 8
so 2^y = 32 & 2^y = 8
so 2^y = 2^5 & 2^y = 2^3
so y= 5 & y = 3
so x= 3 & 5
Answered by
5
Answer:
have a nice day ........
Attachments:
Similar questions
English,
5 months ago
Social Sciences,
5 months ago
Accountancy,
5 months ago
Science,
10 months ago
Biology,
10 months ago
Math,
1 year ago
Math,
1 year ago