if x+y=8 and xy=15 then find the value of x⁴+x²y²+y⁴
Answers
Answered by
3
Answer:
-29
Step-by-step explanation:
xy=15
so (xy)^2=15*15=225
x+y=8
(x+y)(x+y)=8*8=64
x^2+y^2+2xy=64
x*x + y*y = 64-(2*15)=64-30=14
(x^2+y^2)(x^2+y^2)=14*14=196
x^4 + y^4 + 2(x^2)(y^2) = 196
x^4 + y^4 + 2(225) = 196
x^4 + y^4 = 196-450
x^4 + y^4 + (x^2)(y^2) = 196-225-225+225 = 196-225
=-29
Answered by
3
Answer:931
Step-by-step explanation:
Given that,
x+y=8..............(1)
And xy=15......(2)
To find value of x^4+x^2y^2+y^4=?
From (2), x^2y^2=(15)^2=225
Squaring (1) we get
(x+y)^2=8^2
Or,x^2+y^2+2xy=64
Or,x^2+y^2+2×15=64
Or, x^2+y^2=64-30
Or, x^2+y^2=34..............(3)
Squaring (3) we get
(x^2+y^2)^2=(34)^2
Or, x^4+y^4+2x^2y^2=1156
Or, x^4+y^4+2×225=1156
Or,x^4+y^4=1156-450
Or, x^4+y^4=706
Therefore,
x^4+y^4+x^2y^2=706+225=931
Similar questions