If x+y =9 & x^2+y^2 ,xy=?
Answers
Answered by
1
Given: x2−xy−10−2y2=0x2−xy−10−2y2=0;
Rearrange x2−y2−y2−xy−10=0x2−y2−y2−xy−10=0;
Apply a2−b2=(a−b)(a+b)a2−b2=(a−b)(a+b): (x−y)(x+y)−y2−xy−10=0(x−y)(x+y)−y2−xy−10=0 --> (x−y)(x+y)−y(y+x)−10=0(x−y)(x+y)−y(y+x)−10=0;
Factor out x+yx+y: (x+y)(x−y−y)−10=0(x+y)(x−y−y)−10=0;
Since given that x+y=2x+y=2, then we have that 2(x−2y)−10=02(x−2y)−10=0 --> x−2y=5
Rearrange x2−y2−y2−xy−10=0x2−y2−y2−xy−10=0;
Apply a2−b2=(a−b)(a+b)a2−b2=(a−b)(a+b): (x−y)(x+y)−y2−xy−10=0(x−y)(x+y)−y2−xy−10=0 --> (x−y)(x+y)−y(y+x)−10=0(x−y)(x+y)−y(y+x)−10=0;
Factor out x+yx+y: (x+y)(x−y−y)−10=0(x+y)(x−y−y)−10=0;
Since given that x+y=2x+y=2, then we have that 2(x−2y)−10=02(x−2y)−10=0 --> x−2y=5
maya51:
kaun sa
Similar questions