Math, asked by Ananyakaushik, 1 year ago

If x+y=9 and xy=20 then find the value of x^2+y^2

Answers

Answered by sahilfireboy
2

Answer:

41

Step-by-step explanation:

Given : x+y=9 and xy=20

To Find: the value of x²+y²

Solution:  

Identity : (x+y)^2=x^2+y^2+2xy

We are given that  x+y=9 and xy=20

Substitute the values .

(9)^2=x^2+y^2+2(20)

81=x^2+y^2+40

81-40=x^2+y^2

41=x^2+y^2

Hence  the value of x²+y² is 41


sahilfireboy: pls mark me brainliest
Answered by Alishka009
3

HEYA FRIEND HERE IS YOUR ANSWER

GIVEN : x+y = 9

               xy = 20

Now,

(x+y)² = x² + y² + 2xy            (1)

Substituting the value of x+y and xy in (1)

(9)² = x² + y² + 2(20)

81 = x² + y² + 40

81 - 40 = x² + y²

∴ x² + y² = 41

HOPE IT HELPS YOU!!

Similar questions