if x+y = a and x2+y2 = b then find the value of x3+y3
Answers
Answered by
8
x+y =a
on squaring both sides
(x+y) ^2=a^2
x^2+y^2+2xy =a^2
b+2xy=a^2
2xy=a^2-b
xy =(a^2-b) /2
Now, x^3+y^3
=(x+y) ( x^2+y^2-xy)
=a×{b-( a^2-b)/2}
=a×(2b-a^2+b)/2
=(2ab-a^3+ab)/2
Answered by
4
Answer:
we know,
the algebraic formula
☑ (a^3+b^3)=(a+b)(a^2-ab+b^2)
therefor ,
(x^3+y^3)= (x+y)(x^2-xy+y^2)
we have,
x+y=a
x^2+y^2 = b
xy = ?
☑ the algebraic formula,
(a+b)^2= a^2+2ab+b^2
(x +y)^2 =2xab+(x^2+x^2)
[(x+y)^2-(x^2+y^2)]/2 = (xy)
[(a)^2-(b) ]/2 = (xy)
☑ (x^3+y^3)= (x+y)(x^2-xy+y^2)
= (a) ((x^2+y^2)-(xy))
= (a) (b) -[(a) ^2-(b) ]/2
Similar questions