Math, asked by jjamiu658, 1 month ago

If x^y = e^x-y prove that dy/dx = logx/ (1+log)²​

Answers

Answered by SparklingBoy
6

☆ Appropriate Question ➽

If \large \bf {x}^{y}  =  {e}^{x - y}

Then Prove That :-

 \bf \dfrac{dy}{dx}  =  \dfrac{log \: x}{(1 +  {log \: x)}^{2} }

☆ Given ➽

\Large \sf  {x}^{y}  = e {}^{x - y}

☆ To Prove ➽

 \bf  \green{  \dfrac{dy}{dx} =  \dfrac{log \: x}{(1 +  {log \: x)}^{2} }   }

☆ Formulae Used ➽

  \bf \maltese \:  \:  \: log \:  {m}^{n}  = n .log \: m \\  \\ \small  \bf \maltese \:  \:  \:  \frac{d}{dx}  \bigg( \frac{f(x)}{g(x)}  \bigg) =  \frac{g(x).f '(x) - f(x).g '(x) }{ \{g(x) { \}}^{2} }  \\  \\  \bf \maltese \:  \:  \: log \: e = 1

☆ Proof ➽

Given that,

   \large\sf{x}^{y}  =  {e}^{x - y}

Taking log both side we get ,

 \sf log( {x}^{y} )  =  log( {e}^{x - y} )  \\  \\  \sf y. log \: x = (x - y). log \: e  \\  \\  \sf y.log \: x= x - y \\  \\  \sf y \big(log \: x + 1 \big) = x \\  \\   \large \purple{\bf \implies \underline{ \boxed{  \bf y =  \frac{x}{1 +  log \: x} }}}

Differentiating both sides w.r.t x

 \sf \dfrac{dy}{dx}  =  \dfrac{d}{dx}  \bigg(  \dfrac{x}{1 + log \: x} \bigg) \\  \\  \sf =  \dfrac{(1 + log \: x) \frac{dx}{dx} - x \frac{d}{dx} (log \: x) }{ {(1 + log \: x)}^{2} }  \\  \\   \sf =  \frac{(1 + log \: x).1 - x. \frac{1}{x} }{ {(1 + log \: x)}^{2} }  \\  \\  =  \sf  \dfrac{1 + log \: x - 1}{ {(1 +  log \: x)}^{2} }  \\  \\  \Large \purple{ \implies  \underline {\boxed{{\bf  \frac{dy}{dx}  =  \frac{log \: x}{( {1 + log \: x)}^{2} }} }}}

Hence Proved

___________________________

Answered by NewtonBaba420
0

Ok Here is your Answer in picture attached

Attachments:
Similar questions