Math, asked by Levin25, 1 year ago

If X + y is equal to pi by 4 prove that (1+tanx)(1+tany) is equal to 2

Answers

Answered by ihrishi
2

Step-by-step explanation:

Given:

x + y =  \frac{ \pi}{4}  \\ applying \: tan \: on \: both \: sides:  \\ tan(x + y) =  tan \: \frac{ \pi}{4}  \\   \frac{tan \: x + tan \: y}{1 - tanx \: tan \: y}  = 1 \\ tan \: x + tan \: y = 1 - tanx \: tan \: y \\  tan \: x + tan \: y  + tanx \: tan \: y \: =1 \: \\adding \: 1 \: both \: sides:  \\   1 + tan \: x  +  tan \: y  + tanx \: tan \: y \: =1  + 1 \\ (1 + tan \: x) +  tan \: y(1  + tanx )=2 \\ (1 + tanx)(1 + tany) = 2 \\ hence \: proved:

Similar questions