Math, asked by jaideepreddy7277, 1 year ago

If (x + y) ^(m + n) = x^m . y^n then prove that . dy/dx = y/x.

Answers

Answered by Anonymous
6

Question :-

 \red{ \star \: if \:  \:  \:  {x}^{m}  {y}^{n}  =  {(x + y)}^{(m + n)} } \\ \green{ then \: show \: that \:   \boxed{\frac{dy}{dx}  =  \frac{y}{x} }}

Step - by - step explanation:-

Used properties :-

 \implies \:  \boxed{ log( {m}^{n} )  = n log(m) } \\  \\  \implies \:  \boxed{ log(mn)  =  log(m)  +  log(n) }

Solution :-

According to the question,

 {{x}^{m}  {y}^{n}  =  {(x + y)}^{(m + n)} } \:  \\

Taking logarithm of both sides ,

 log( {x}^{m}  {y}^{n} )  =  log \big( {(x + y)}^{(m + n)} \big) \\  \\

Using the given properties of logarithm,

 log( {x}^{m} )  +  log( {y}^{n} )  = (m + n) log(x + y) \\  \\ m \:  log(x)  + n \:  log(y)  = (m + n) log(x + y)

Now differentiate with respect to" x " of both sides ,

 \because \: \red{  \frac{d( log(x)) }{dx}  =  \frac{1}{x} } \\  \\  \therefore \:  \frac{m}{x}  +  \frac{n}{y}  \:  \frac{dy}{dx}  =  \frac{(m + n)}{(x + y)}  \times (1 +  \frac{dy}{dx} ) \\  \\  \frac{(m + n)}{(x + y)}  \:  \frac{dy}{dx}  -  \frac{n}{y}  \:  \frac{dy}{dx} \:  =  \frac{m}{x}   -  \frac{(m + n)}{(x + y)}  \\  \\  \frac{dy}{dx}  \bigg( \frac{(m + n)y - n(x + y)}{(x + y)y}  \bigg) =  \frac{mx + my - mx - nx}{x(x + y)}  \\  \\  \frac{dy}{dx} \bigg( \frac{my - nx}{(x + y)y} \bigg) =  \frac{my - nx}{x(x + y)}    \\  \\   \therefore \:  \\  \\ \implies \:   \green{\boxed{ \red{\boxed{  \frac{dy}{dx}  =  \frac{y}{x} }}}}

Hence proved.

Similar questions