If (x+y)^m+n = x^my^n .Then find dy/dx.
Answers
Answered by
26
Given,
(x+y)^m+n = x^m*y^n .
Applying logarithm on both sides.
log (x+y)^m+n = logx^m*y^n .
m+n log ( x + y) = log(x^m) + log(y^n)
(m+n) log ( x+y) = m logx + n logy .
Now, Differentiate with respect to " x "
d/dx [ (m+n) log(x+y) ] = d/dx [ mlogx + n logy ]
( m+n) (1/x+y) d/dx [ (x+y) ] = m (1/x) + n(1/y) dydx
(m+n)/x+y [ 1 + dy/dx ] = m/x + n/y dy/dx
[ (m+n)/(x+y) + (m+n)/(x+y) dy/dx ] = m/x + n/y dy/dx
dy/dx [ (m+n)/(x+y) - n/y ] = m/x -( m+n)/x+y
Formulae :
d/dx(u+v) = d/dx(u)+d/dx(v)
d/dx (Ku) = K d/dx ( u)
d/dx ( logx) = 1/x.
Hope helped!
(x+y)^m+n = x^m*y^n .
Applying logarithm on both sides.
log (x+y)^m+n = logx^m*y^n .
m+n log ( x + y) = log(x^m) + log(y^n)
(m+n) log ( x+y) = m logx + n logy .
Now, Differentiate with respect to " x "
d/dx [ (m+n) log(x+y) ] = d/dx [ mlogx + n logy ]
( m+n) (1/x+y) d/dx [ (x+y) ] = m (1/x) + n(1/y) dydx
(m+n)/x+y [ 1 + dy/dx ] = m/x + n/y dy/dx
[ (m+n)/(x+y) + (m+n)/(x+y) dy/dx ] = m/x + n/y dy/dx
dy/dx [ (m+n)/(x+y) - n/y ] = m/x -( m+n)/x+y
Formulae :
d/dx(u+v) = d/dx(u)+d/dx(v)
d/dx (Ku) = K d/dx ( u)
d/dx ( logx) = 1/x.
Hope helped!
AkshithaZayn:
gr8 sir. :D
Answered by
19
Hi
(x + y)^(m + n) = x^m . y^n
takin natural log on both sides
log(e){ (x + y)^(m + n) } = log(e) { x^m . y^n }
(m + n) log(e) (x + y) = log(e) x^m + log(e) y^n
(m + n) log(e) (x + y) = m log(e) x + n log(e) y
Differentiate :
(m + n) . 1/(x +y) .(1 + y') = m/x + n/y . y'
(m + n) .( 1 + y' / x+y) = my + nxy' / xy
(m + n) ( 1 + y' ) xy = ( my + nxy' ) (x + y )
mxy + mxyy' + nxy + nxyy' = mxy + nx²y + my² + nxyy'
mxyy' + nxy = nx²y' + my²
mxyy' - nx²y = my² - nxy
( my - nx ) xy' = ( my - nx ) y
xy' = y
y' = y/x
(x + y)^(m + n) = x^m . y^n
takin natural log on both sides
log(e){ (x + y)^(m + n) } = log(e) { x^m . y^n }
(m + n) log(e) (x + y) = log(e) x^m + log(e) y^n
(m + n) log(e) (x + y) = m log(e) x + n log(e) y
Differentiate :
(m + n) . 1/(x +y) .(1 + y') = m/x + n/y . y'
(m + n) .( 1 + y' / x+y) = my + nxy' / xy
(m + n) ( 1 + y' ) xy = ( my + nxy' ) (x + y )
mxy + mxyy' + nxy + nxyy' = mxy + nx²y + my² + nxyy'
mxyy' + nxy = nx²y' + my²
mxyy' - nx²y = my² - nxy
( my - nx ) xy' = ( my - nx ) y
xy' = y
y' = y/x
Similar questions