Math, asked by sutapamandal2004, 11 months ago

if (X+Y) variance Z when Y constant and (X+Z) variance Y when Z constant then prove that (X+Y+Z) variance YZ when Y and Z both variable.​

Answers

Answered by Swarup1998
2

Given data:

  • \mathsf{X+Y\propto Z} when \mathsf{Y} is constant

  • \mathsf{X+Z\propto Y} when \mathsf{Z} is constant

To prove:

\mathsf{X+Y+Z\propto YZ} when both \mathsf{Y} and \mathsf{Z} are variables

Step-by-step explanation:

Step 1.

Given, \mathsf{X+Y\propto Z} when \mathsf{Y} is constant

\mathsf{\Rightarrow X+Y=k_{1}Z} where \mathsf{Y} and \mathsf{k_{1}} are constants

Adding \mathsf{Z} in both sides, we get

\quad \mathsf{X+Y+Z=k_{1}Z+Z}

\mathsf{\Rightarrow X+Y+Z=(1+k_{1})Z}

\mathsf{\Rightarrow X+Y+Z\propto Z} . . . (i), since \mathsf{1+k_{1}} is a constant

Step 2.

Given, \mathsf{X+Z\propto Y} when \mathsf{Z} is constant

\Rightarrow \mathsf{X+Z=k_{2}Y} where \mathsf{Z} and \mathsf{k_{2}} are constants

Adding \mathsf{Y} in both sides, we get

\quad \mathsf{X+Y+Z=k_{2}Y+Y}

\mathsf{\Rightarrow X+Y+Z=(1+k_{2})Y}

\mathsf{\Rightarrow X+Y+Z\propto Y} . . . (ii), since \mathsf{1+k_{2}} is a constant

Step 3.

From (i) and (ii), using the compound theorem of variation, we get

\quad \mathsf{X+Y+Z\propto ZY} since both \mathsf{Z} and \mathsf{Y} are variables

\mathsf{\Rightarrow X+Y+Z\propto YZ} when both \mathsf{Y} and \mathsf{Z} are variables

Conclusion:

\mathsf{X+Y+Z\propto YZ} when both \mathsf{Y} and \mathsf{Z} are variables.

Hence proved.

Similar questions