Math, asked by rohitskillman, 1 year ago

if x/y+y/x=-1, find the value of x^3-y^3

Attachments:

Answers

Answered by rakeshmohata
11
Hope u like my process
=====================
 =  >  \it \frac{x}{y}  +  \frac{y}{x}  =  - 1 \\  \\ \bf \underline{squaring \:  \: both \:  \: sides \:  \: we \:  \: get}  \\  \\  =  >  \it \: ( \frac{x}{y}  +  \frac{y}{x})^{2}   =   {( - 1)}^{2}  \\  \\  =  >   \it\frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2} }  + 2 \frac{x}{y} . \frac{y}{x}  = 1 \\  \\  =  >  \it \frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2} }  + 2 = 1 \\  \\  =  >  \it \frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2} }  = 1 - 2 =   - 1 \\  \\  =  >  \bf \:  \frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2} }  + 1 =  \underline{0 }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \underline{ \:  \: now \:  \: } \\  \\  =  >  \it \frac{  {x}^{3} }{ {y}^{3} }  -  \frac{ {y}^{3} }{ {x}^{3} }  \\  \\  \it = ( \frac{x}{y}  -  \frac{y}{x} )(  \frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2} }  +  \frac{x}{y} \times  \frac{y}{x} ) \\  \\  \it =  ( \frac{x}{y}  -  \frac{y}{x} )( \frac{ {x}^{2} }{ {y}^{2} }  +  \frac{ {y}^{2} }{ {x}^{2} }  + 1) \\  \\  =   \it \: ( \frac{x}{y}  -  \frac{y}{x} ) \times 0 \\  \\  =  \bf \underline{0}
_________________________
Hope this is ur required answer

Proud to help you
Answered by Anonymous
5

Hi,   Please see the attached file!    Thanks!

Attachments:
Similar questions