Math, asked by TbiaSamishta, 1 year ago

If x+y+z=0 show that x³+y³+z³=3xyz

Answers

Answered by HappiestWriter012
82
Hey there!

If
x + y + z = 0

x + y =  - z  \\  \\  \textbf{cubing \: on \: both \: sides}\\  \\  {(x + y)}^{3}  =  { - z}^{3}  \\  \\  {x}^{3}  +  {y}^{3}  + 3xy(x + y) =  { - z}^{3}  \\  \\  {x}^{3}  +  {y}^{3}  + 3xy( - z) =  { - z}^{3}  \\  \\  {x}^{3}  +  {y}^{3}  +  {z}^{3}  = 3xyz

Hence proved!

Ashishkumar098: nice :-)
Answered by Ashishkumar098
28
 \bold {\huge{Ello!!}}

<b >Here's your answer

_______________________

Given , x + y + z = 0

To prove , x³ + y³ + z³ = 3xyz

Now ,

x + y + z = 0

x + y = - z ---------------- ( i )

( x + y )³ = ( - z )³ [ ★ Qubing both sides ]

x³ + y³ + 3xy ( x + y ) = - z³

x³ + y³ + z³ + 3xy ( - z ) = 0 [ ★ Putting the value of ( x + y ) = - z ]

x³ + y³ + z³ - 3xyz = 0

x³ + y³ + z³ = 3xyz \boxed{Hence , Proved}

●▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬●

<b><u><marquee direction> Hope it helps !!
Similar questions