if x+y+z=0 show thatx^3+y^3+z^3=3xyz
z
Answers
Answered by
2
We know the formula,
(a+b+c)^3 =
Refer to pic I'm sending
So if
x+y+z = 0
(x+y+z)^3 = x^3+y^3+z^3 - 3xyz
0 + 3xyz = x^3+y^3+z^3
Attachments:
Answered by
2
Given, x3 + y3 + z3 = 3xyz
Therefore, x3 + y3 + z3 - 3xyz =0
This means,
x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
Now if x + y + z = 0, then,
x3 + y3 + z3 - 3xyz = ( 0 ) (x2 + y2 + z2 - xy - yz - zx)
[ subsituting the value of x + y + z ]
x3 + y3 + z3 - 3xyz = 0
x3 + y3 + z3 = 3xyz .
Similar questions