Math, asked by vanshikakarishm, 10 months ago

If X+y+z=0, then find 1/(x^2+z^2-y^2) + 1/(y^2+z^2-x^2) + 1/(y^2+x^2-z^2)

Answers

Answered by kapilsir19
0

Answer:

given \\ x + y + z = 0 \\ now \\  \frac{1}{ {x}^{2} +  {z}^{2}   -  {y}^{2} }  +  \frac{1}{ {y}^{2}  +  {z}^{2} - {x}^{2}   }  +  \frac{1}{ {y}^{2}  +  {x}^{2}  -  {z}^{2} }  \\  \frac{1}{(x + z + y)(x + z - y)}  +  \frac{1}{(y + z + x)(y + z - x)}  +  \frac{1}{(y + x + z)(y + x - z)}  \\  \frac{1}{0(x + z - y)}  +  \frac{1}{0(y + z - x)}  +  \frac{1}{0(y + x - z)}  \\  \frac{1}{0}  +  \frac{1}{0}  +  \frac{1}{0}  \\ 0 + 0 + 0  = 0 \\ anssssssss

Step-by-step explanation:

please Mark as a result

Similar questions