Math, asked by harshini3106, 1 year ago

if x + y + z = 0 , then find the value of x^2 + y^2 + z^2/ x^2 - yz

Answers

Answered by Anonymous
3

Answer:

Ifx+y+z=0then

yz

x

2

+

zx

y

2

+

xy

z

2

=3

Step-by-step explanation:

Given \: x+y+z=0---(1)Givenx+y+z=0−−−(1)

\begin{lgathered}LHS=\frac{x^{2}}{yz}+\frac{y^{2}}{zx}+\frac{z^{2}}{xy}\\=\frac{x^{3}+y^{3}+z^{3}}{xyz}\\=\frac{(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)+3xyz}{xyz}\\=\frac{0\times (x^{2}+y^{2}+z^{2}-xy-yz-zx)+3xyz}{xyz}\end{lgathered}

LHS=

yz

x

2

+

zx

y

2

+

xy

z

2

=

xyz

x

3

+y

3

+z

3

=

xyz

(x+y+z)(x

2

+y

2

+z

2

−xy−yz−zx)+3xyz

=

xyz

0×(x

2

+y

2

+z

2

−xy−yz−zx)+3xyz

/* From (1) */

=\frac{3xyz}{xyz}=

xyz

3xyz

\begin{lgathered}= 3\\=RHS\end{lgathered}

=3

=RHS

Therefore.,

\begin{lgathered}If\: x+y+z=0 \: then \\\frac{x^{2}}{yz}+\frac{y^{2}}{zx}+\frac{z^{2}}{xy}=3\end{lgathered}

Ifx+y+z=0then

yz

x

2

+

zx

y

2

+

xy

z

2

=3

Similar questions