If x+y +z=0 then prove that x 3 +y 3 +z 3 = 3xyz
Answers
Answered by
16
x+y+z=0
=x+y=-z
=(x+y)^3=-z^3
=x^3+y^3+3xy(x+y)=-z^3
But x+y=-z
x^3+y^3-3xyz+z^3=0
=x^3+y^3+z^3=3xyz[Proved]
bhavikrathod75:
done
Answered by
14
Heya mate, Here is ur answer
x+y+z=0
x+y=-z
cubing both the sides
(x+y)^3=-z^3
x^3 + y^3 +3xy(x+y) =-z^3
but x+y=-z
x^3 +y^3 +3xy(-z) =-z^3
x^3 +Y^3 -3xyz=-z^3
x^3 +Y^3+ z^3 = 3xyz
===========================
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
x+y+z=0
x+y=-z
cubing both the sides
(x+y)^3=-z^3
x^3 + y^3 +3xy(x+y) =-z^3
but x+y=-z
x^3 +y^3 +3xy(-z) =-z^3
x^3 +Y^3 -3xyz=-z^3
x^3 +Y^3+ z^3 = 3xyz
===========================
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
Similar questions