If x+y+z=0, then prove that x³+y³+z³=3xyz
Answers
Answered by
7
Answer:
we know that
(x+y+z)(x²+y²+z²-xy-zy-zx)=x³+y³+z³-3xyz
it is given x+y+z=0
0(x²+y²-xy-zy-zx)=x³+y³+z³-3xyz
0=x³+y³z³-3xyz
3xyz=x³+y³+z³
Answered by
4
ɢɪᴠᴇɴ:
- If x+y+z=0, then prove that x³+y³+z³=3xyz
sᴏʟᴜᴛɪᴏɴ:
x + y + z = 0 ⇨ x + y = -z
➙ (x + y)³ = ( -z)³
➙ x³ + y³ + 3xy(x + y) = (-z)³
➙x³ + y³ + 3xy( -z ) = -z³ [∵ (x+y) = -z ]
➙ x³ + y³ - 3xyz = -z³
➙ x³ + y³ + z³ = 3xyz
Hence,
( x + y + z) = 0
➙ (x³ + y³ + z³) = 3xyz
Hence Proved !!!
Similar questions