If X+y+z=1,XY+yz+zx=-1 and xyz=-1,find the value of x³+y³+z³
Answers
Step-by-step explanation:
x+y+z=1
x+y=-z
y+z=-x
z+x=-y
x³+y³+z³=(x+y+z)³-3(y+z)(z+x)(x+y)
=(1)³-3(-x)(-y)(-z)
=1+3xyz
=-2
Answer:
Given that :
x + y + z = 1
xy + yz + zx = 1
xyz = (-1)
We know that ;
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx).
Here, we need to find (x² + y² + z²) first,
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ (1)² = x² + y² + z² + 2(1)
⇒ 1 = x² + y² + z² + 2
⇒ x² + y² + z² = 1 - 2
⇒ x² + y² + z² = (-1)
Now,
x³ + y³ + z³ - 3xyz = (x + y + z){x² + y² + z² - (xy + yz + zx)} .
⇒ x³ + y³ + z³ - 3(-1) = 1 {(-1) - (1)}
⇒ x³ + y³ + z³ + 3 = 1 * (-2)
⇒ x³ + y³ + z³ + 3 = - 2
⇒ x³ + y³ + z³ = - 2 - 3
⇒ x³ + y³ + z³ = -5
Hence, the answer is (-5).
_______________________
Step-by-step explanation: