Math, asked by vermapranav001, 1 year ago

if x+y+z=1,xy+yz+zx=-1 and xyz=-1.Find the value of x³+y³+z³

Answers

Answered by Hari1431
17
Given That
x+y+z=1,xy+yz+zx=-1 And xyz=-1
we Know That
(x+y+z)^3=x^3+y^3+z^3+3(x+y+z)(xy+yz+zx)-3xyz
Then
(1)^3=x^3+y^3+z^3+3(1)(-1)-3(-1)
x^3+y^3+z^3=1
Answered by mgmaluminium
3

Answer:

Given that :

   x + y + z = 1

   xy + yz + zx = 1

   xyz = (-1)

We know that ;

x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx).

Here, we need to find (x² + y² + z²) first,

(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)

⇒ (1)² = x² + y² + z² + 2(1)

⇒ 1 = x² + y² + z² + 2

⇒ x² + y² + z² = 1 - 2

⇒ x² + y² + z² = (-1)

Now,

x³ + y³ + z³ - 3xyz = (x + y + z){x² + y² + z² - (xy + yz + zx)} .

⇒ x³ + y³ + z³ - 3(-1) = 1 {(-1) - (1)}

⇒ x³ + y³ + z³ + 3 = 1 * (-2)

⇒ x³ + y³ + z³ + 3 = - 2

⇒ x³ + y³ + z³ = - 2 - 3

⇒ x³ + y³ + z³ = -5

Hence, the answer is (-5).

_______________________

Similar questions