if x+y+z=1,xy+yz+zx=-1 and xyz=-1.Find the value of x³+y³+z³
Answers
Answered by
6
first ,we find x^2+y^2 +z^2
(x+y+z)^2=x^2 +y^2+z^2+2xy +2yz +2zx
(1)^2 =x^2+y^2+z^2+2(1)
1 = x^2+y^2+z^2+2
1-2 = x^2+y^2+z^2
-1 = x^2+y^2+z^2
x^3+ y^3 +z^3-3xyz=(x+y+z)(x^2+y^2 +z^2-xy-yz-zx)
1^3-3*1=(1)(-1-1)
1-3=-2
-2=-2
-2+2=0
0 is the answer
(x+y+z)^2=x^2 +y^2+z^2+2xy +2yz +2zx
(1)^2 =x^2+y^2+z^2+2(1)
1 = x^2+y^2+z^2+2
1-2 = x^2+y^2+z^2
-1 = x^2+y^2+z^2
x^3+ y^3 +z^3-3xyz=(x+y+z)(x^2+y^2 +z^2-xy-yz-zx)
1^3-3*1=(1)(-1-1)
1-3=-2
-2=-2
-2+2=0
0 is the answer
Answered by
2
Answer:
Given that :
x + y + z = 1
xy + yz + zx = 1
xyz = (-1)
We know that ;
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx).
Here, we need to find (x² + y² + z²) first,
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ (1)² = x² + y² + z² + 2(1)
⇒ 1 = x² + y² + z² + 2
⇒ x² + y² + z² = 1 - 2
⇒ x² + y² + z² = (-1)
Now,
x³ + y³ + z³ - 3xyz = (x + y + z){x² + y² + z² - (xy + yz + zx)} .
⇒ x³ + y³ + z³ - 3(-1) = 1 {(-1) - (1)}
⇒ x³ + y³ + z³ + 3 = 1 * (-2)
⇒ x³ + y³ + z³ + 3 = - 2
⇒ x³ + y³ + z³ = - 2 - 3
⇒ x³ + y³ + z³ = -5
Hence, the answer is (-5).
_______________________
Step-by-step explanation:
Similar questions