If x+y+z=1 , xy+yz+zx= –1 and xyz = –1 Then find the value of x³+y³+z³
Answers
Answered by
0
Step-by-step explanation:
as a3 +b3+c3=3abc
so
x3 +y3+z3=3×(-1)
x3+y3+z3=-3
Answered by
1
Answer:
Given that :
x + y + z = 1
xy + yz + zx = 1
xyz = (-1)
We know that ;
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx).
Here, we need to find (x² + y² + z²) first,
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ (1)² = x² + y² + z² + 2(1)
⇒ 1 = x² + y² + z² + 2
⇒ x² + y² + z² = 1 - 2
⇒ x² + y² + z² = (-1)
Now,
x³ + y³ + z³ - 3xyz = (x + y + z){x² + y² + z² - (xy + yz + zx)} .
⇒ x³ + y³ + z³ - 3(-1) = 1 {(-1) - (1)}
⇒ x³ + y³ + z³ + 3 = 1 * (-2)
⇒ x³ + y³ + z³ + 3 = - 2
⇒ x³ + y³ + z³ = - 2 - 3
⇒ x³ + y³ + z³ = -5
Hence, the answer is (-5).
_______________________
Step-by-step explanation:
Similar questions