Math, asked by kingraviraj86, 1 year ago

If x+y+z=1,xyz=-1and xy+yz+xz=-1 then find the the value of x³+y³+z³.

Answers

Answered by Anonymous
12

\textbf{\underline{\underline{According\:to\:the\:Question}}}

\fbox{Formula\;to\;be\;used}

x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² × yz × zx × xy)

{\boxed{\sf\:{We\;can\;also\;write\;it}}}

x³ + y³ + z³ = (x + y + z)(x² + y² + z² × yz × zx × xy) + 3xyz

\fbox{Put\;the\;values}

x³ + y³ + z³= (1) {(x²+y²+ z²- (-1)} + 3(-1)

x³ + y³ + z³= (1)(x² + y² + z² + 1) - 3 ....... (1)

\fbox{Therefore}

x² + y² + z²

(x + y + z)² = x² + y² + z² + 2 (xy + yz + zx)

(1)² = x² + y² + z² + 2(-1)

1 = x² + y² + z² - 2

1 + 2 = x² + y² + z²

3 = x² + y² + z² ........ (2)

{\boxed{\sf\:{Substitute\;the\;value\;of\;(2)\;in\;(1)}}}

x³ + y³ + z³= (1)(3 + 1) - 3

x³ + y³ + z³= (1)(4) - 3

x³ + y³ + z³ = 1

\boxed{\begin{minipage}{9 cm} Additional Information \\ \\ $\ 1)(x+y)^2=x^2+y^2+2xy \\ \\ 2)(x-y)^2=x^2+y^2-2xy \\ \\ 3)(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx \\ \\ 4)(x+y)^3=x^3+y^3+3xy(x+y) \\ \\ 5)(x-y)^3=x^3-y^3-3xy(x-y) $\end{minipage}}

Answered by shubhankar16
3

hope it helps mark as brainliest please follow me

Attachments:
Similar questions