If x + y + z= 10 and x^2+y^2+z^2=40 , then find the value of (xy+yz+zx)
Answers
Given:
- x + y + z = 10
- x² + y² + z² = 40
To find out:
Find the value of ( xy + yz + zx )
Solution :
We have,
( x + y + z )² = x² + y² + z² + 2xy + 2yz + 2zx
➠ ( 10 )² = x² + y² + z² + 2 ( xy + yz + zx )
➠ 100 = 40 + 2 ( xy + yz + zx )
➠ 100 - 40 = 2 ( xy + yz + zx )
➠ 60 = 2 ( xy + yz + zx )
➠ xy + yz + zx = 60/2
➠ xy + yz + zx = 30
Hence, the value of ( xy + yz + zx ) is 30.
Additional information:
- ( a + b )² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab
- ( a + b )³ = a³ + b³ + 3ab ( a + b )
- ( a - b )³ = a³ - b³ - 3ab ( a - b )
- a³ + b³ = ( a + b ) ( a² - ab + b² )
Given
x + y + z = 10
x² + y² + z² = 40
To find
Value of (xy + yz + zx)
Solution
Here,given the value of (x + y + z) = 10 & (x² + y² + z²) = 40
We know identity :
➥ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Putting values we get :
➝ (10)² = 40 + 2(xy + yz + zx)
➝ 100 = 40 + 2(xy + yz + zx)
➝ 100 - 40 = 2(xy + yz + zx)
➝ 60 = 2(xy + yz + zx)
➝ xy + yz + zx = 60/2
➝ (xy + yz + zx) = 30
Therefore,
Required value of (xy + yz + zx) = 30
_________________________________
Some more identities :
⟼ (a + b + c)³ = a³ + b³ + c³ + 3(a + b)(b + c)(c + a)
⟼ (x + a)(x + b) = x² + (a + b)x + ab
⟼ a² - b² = (a + b)(a - b)
⟼ 4ab = (a + b)² - (a - b)²
⟼ 2(a² + b²) = (a + b)² + (a - b)²