If x+y+z=12 and x^2+y^2+z^2=70,then find the value of x^3+y^3+z^3-3xyz
Answers
Answered by
8
Answer:
Step-by-step explanation:
BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST
Attachments:
Answered by
12
x + y + z = 12
x² + y² + z² = 70
★We know identity :-
(x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
★Substitute the values get :-
(12)² = 70 + 2(xy + yz + zx)
144 = 70 + 2(xy + yz + zx)
144 - 70 = 2(xy + yz + zx)
74 = 2(xy + yz + zx)
xy + yz + zx = 37
★Here we have,
x³ + y³ + z³ - 3xyz
= (x + y + z)(x² + y² + z² - xy - yz - zx)
= (x + y + z)[(x² + y² + z² - (xy + yz + zx)]
★We get the values above :-
= (12)(70 - 37)
= 12 × 33
= 396
Similar questions