If x+y+z=16 and x^2+y^2+z^2=33 find x^3+y^3+z^3-3xyz
Answers
Answered by
0
formula for x^3+y^3+z^3-3xyz is=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=16(33-xy-yz-zx)
=-16zx-16yz-16xy+528
=16(33-xy-yz-zx)
=-16zx-16yz-16xy+528
Similar questions