If x+y+z=3,x^2+y^2+z^2=5,x^3+y^3+z^3=7,find the value of x^4+y^4+z^4
Answers
Given :-
- x + y + z = 3
- x^2+y^2+z^2=5
- x^3+y^3+z^3=7.
To Find :-
- x^4+y^4+z^4 = ?
Solution :-
Let ,
→ x + y + z = 3 ---------- Equation (1)
→ x^2+y^2+z^2=5 --------- Equation (2)
→ x^3+y^3+z^3=7 ----------- Equation (3) .
Squaring Both Sides of Equation (1) Now, we get,
→ (x + y + z)² = 3²
→ x² + y² + z² + 2(xy + yz + zx) = 9
Putting value of Equation (2) now, in LHS,
→ 5 + 2(xy + yz + zx) = 9
→ 2(xy + yz + zx) = 9 - 5
→ (xy + yz + zx) = 2 . -------------- Equation (4).
_________________
Now, using x ³ + y ³ + z ³ - 3xyz = (x + y + z) (x ² + y ² + z²-xy -xz- yz)
→x ³ + y ³ + z ³ - 3xyz = (x + y + z) (x ² + y ² + z²-xy -xz- yz)
→ x ³ + y ³ + z ³ - 3xyz = (x + y + z)[x ² + y ² + z²- (xy+xz+yz)]
Putting values of Equation (1) , (2), (3) & Equation (4) in This formula we get,
→ 7 - 3xyz = 3 [ 5 - 2 ]
→ 7 - 3xyz = 3 * 3
→ 3xyz = 7 - 9
→ 3xyz = (-2)
→ xyz = (-2/3). ----------------------- Equation (5).
____________________
Now,
☛ (x⁴ + y⁴ + z⁴) = (x² + y² + z²)² - 2(x².y²+y².z²+x².z²)
Or,
☛ (x⁴ + y⁴ + z⁴) = (x² + y² + z²)² - 2[(xy+yz+xz)² - 2xyz(x+y+z)]
Putting Our values of Equation (2) , Equation (4), Equation (5) & Equation (1) in RHS Respectively, we get,
☞ (x⁴ + y⁴ + z⁴) = (5)² - 2[ 2² - 2 * (-2/3) * 3 ]
☞ (x⁴ + y⁴ + z⁴) = 25 - 2[ 4 + 4 ]
☞ (x⁴ + y⁴ + z⁴) = 25 - 16
☞ (x⁴ + y⁴ + z⁴) = 9 (Ans).
(Nice Question.)
Given,
We know that,
Thus we obtain,
And
From (4), we have,
And from (5), we have,
Substituting (7) in (6),
We have to find the values of and
Squaring (1),
Substituting (2),
We know that,
Then (8) becomes,
Hence 9 is the answer.