Math, asked by saivindhyagita6870, 10 months ago

If x+y+z=3,x^2+y^2+z^2=5,x^3+y^3+z^3=7,find the value of x^4+y^4+z^4

Answers

Answered by RvChaudharY50
49

Given :-

  • x + y + z = 3
  • x^2+y^2+z^2=5
  • x^3+y^3+z^3=7.

To Find :-

  • x^4+y^4+z^4 = ?

Solution :-

Let ,

x + y + z = 3 ---------- Equation (1)

→ x^2+y^2+z^2=5 --------- Equation (2)

→ x^3+y^3+z^3=7 ----------- Equation (3) .

Squaring Both Sides of Equation (1) Now, we get,

(x + y + z)² = 3²

→ x² + y² + z² + 2(xy + yz + zx) = 9

Putting value of Equation (2) now, in LHS,

5 + 2(xy + yz + zx) = 9

→ 2(xy + yz + zx) = 9 - 5

→ (xy + yz + zx) = 2 . -------------- Equation (4).

_________________

Now, using x ³ + y ³ + z ³ - 3xyz = (x + y + z) (x ² + y ² + z²-xy -xz- yz)

x ³ + y ³ + z ³ - 3xyz = (x + y + z) (x ² + y ² + z²-xy -xz- yz)

→ x ³ + y ³ + z ³ - 3xyz = (x + y + z)[x ² + y ² + z²- (xy+xz+yz)]

Putting values of Equation (1) , (2), (3) & Equation (4) in This formula we get,

7 - 3xyz = 3 [ 5 - 2 ]

7 - 3xyz = 3 * 3

→ 3xyz = 7 - 9

→ 3xyz = (-2)

→ xyz = (-2/3). ----------------------- Equation (5).

____________________

Now,

(x⁴ + y⁴ + z⁴) = (x² + y² + z²)² - 2(x².y²+y².z²+x².z²)

Or,

(x⁴ + y⁴ + z⁴) = (x² + y² + z²)² - 2[(xy+yz+xz)² - 2xyz(x+y+z)]

Putting Our values of Equation (2) , Equation (4), Equation (5) & Equation (1) in RHS Respectively, we get,

☞ (x⁴ + y⁴ + z⁴) = (5)² - 2[ 2² - 2 * (-2/3) * 3 ]

☞ (x⁴ + y⁴ + z⁴) = 25 - 2[ 4 + 4 ]

☞ (x⁴ + y⁴ + z⁴) = 25 - 16

☞ (x⁴ + y⁴ + z⁴) = 9 (Ans).

(Nice Question.)

Answered by shadowsabers03
36

Given,

  • \sf{x+y+z=3\quad\quad\dots(1)}

  • \sf{x^2+y^2+z^2=5\quad\quad\dots(2)}

  • \sf{x^3+y^3+z^3=7\quad\quad\dots(3)}

We know that,

\longrightarrow\sf{(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)}

Thus we obtain,

\longrightarrow\sf{(x^2+y^2+z^2)^2=x^4+y^4+z^4+2(x^2y^2+y^2z^2+z^2x^2)\quad\quad\dots(4)}

And

\longrightarrow\sf{(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2(xy^2z+yz^2x+zx^2y)}

\longrightarrow\sf{(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)\quad\quad\dots(5)}

From (4), we have,

\longrightarrow\sf{x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)\quad\quad\dots(6)}

And from (5), we have,

\longrightarrow\sf{x^2y^2+y^2z^2+z^2x^2=(xy+yz+zx)^2-2xyz(x+y+z)\quad\quad\dots(7)}

Substituting (7) in (6),

\longrightarrow\sf{x^4+y^4+z^4=(x^2+y^2+z^2)^2-2((xy+yz+zx)^2-2xyz(x+y+z))\ \dots(8)}

We have to find the values of \sf{xy+yz+zx} and \sf{xyz.}

Squaring (1),

\longrightarrow\sf{(x+y+z)^2=3^2}

\longrightarrow\sf{x^2+y^2+z^2+2(xy+yz+zx)=9}

Substituting (2),

\longrightarrow\sf{5+2(xy+yz+zx)=9}

\longrightarrow\sf{xy+yz+zx=2}

We know that,

\longrightarrow\sf{(x+y+z)(x^2+y^2+z^2-(xy+yz+zx))=x^3+y^3+z^3-3xyz}

\longrightarrow\sf{3(5-2)=7-3xyz}

\longrightarrow\sf{xyz=-\dfrac{2}{3}}

Then (8) becomes,

\longrightarrow\sf{x^4+y^4+z^4=5^2-2(2^2+2\times\dfrac{2}{3}\times3)}

\longrightarrow\sf{\underline{\underline{x^4+y^4+z^4=9}}}

Hence 9 is the answer.

Similar questions