Math, asked by bidangshreemahasary, 19 days ago

if x+y+z = 6, x²+y²+z²=14 then find the value of x³+y³+z³-3xyz​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

\rm \: x + y + z = 6 -  -  - (1) \\

and

\rm \:  {x}^{2} +  {y}^{2} +  {z}^{2} = 14 -  -  -  - (2) \\

Now, from equation (1) we have

\rm \: x + y + z = 6 \\

On squaring both sides, we get

\rm \:  {(x + y + z)}^{2} =  {6}^{2} \\

\rm \:  {x}^{2} +  {y}^{2} +  {z}^{2} + 2(xy + yz + zx) = 36 \\

On substituting the value from equation (2), we get

\rm \: 14 + 2(xy + yz + zx) = 36 \\

\rm \: 2(xy + yz + zx) = 36 - 14 \\

\rm \: 2(xy + yz + zx) = 22 \\

\rm\implies \:xy + yz + zx = 11 -  -  -  - (3) \\

Now, Consider

\rm \:  {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz \\

\rm \:  = (x + y + z)( {x}^{2} +  {y}^{2} +  {z}^{2} - xy - yz - zx) \\

\rm \:  = (x + y + z)[{x}^{2} +  {y}^{2} +  {z}^{2} - (xy  + yz  + zx) ]\\

So, on substituting the values from equation (1), (2) and (3), we get

\rm \:  =  \: (6)(14 - 11)

\rm \:  =  \: 6 \times 3 \\

\rm \:  =  \: 18 \\

Hence,

\rm\implies \:\boxed{\tt{  \:  \: \rm \:  {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz \:  =  \: 18  \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Answered by Anonymous
18

 \rm\bigstar \large \: Given :

  \rm\implies \: x + y + z = 6 \:  \: (1)

\rm\implies \:  {x}^{2}  +  {y}^{2} +  {z}^{2}  = 14 \:  \: (2)

\rm  \bigstar\large \:To \:  Find :

\rm\implies \:  {x}^{3}  +  {y}^{3} +  {z}^{3}  - 3xyz

\rm  \bigstar\large \: Solution :

 \rm \: Squaring  \: both  \: sides  \: of  \: equation \:  (1)  \: we  \: get

 \rm (x + y +  {z)}^{2}  =  {(6)}^{2}

\rm \implies \:  {x}^{2}  +  {y}^{2} +  {z}^{2}   + 2xy + 2yz + 2zx = 36\\

 \rm \: By  \: using \:  ''  \: Trinomial  \: square \:  '' \:  identity

 \rm \implies \: 14+ 2(xy + yz + zx) = 36

\rm [ \: by \: using \:(2) ]

 \rm \implies \: 2(xy + yz + zx) = 36 - 14

\rm \implies \: xy + yz + zx=  \dfrac{22}{2}

\rm \: xy + yz + zx=  11 \:  \: (3)

\rm \: L. H. S \implies \: {x}^{3}  +  {y}^{3} +  {z}^{3}  - 3xyz

\rm \: By  \: using \:  ''  \: Special  \: Product \:  '' \:  identity

\rm = (x + y + z)[( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - (xy  +  yz + zx)]

\rm [ \: by \: using \:(1), (2) \: and \: (3)]

 \rm = (6)[14 - 11] = 6 \times 3 = 18

 \rm \bigstar \large \: Therefore,

 \rm \therefore \:The  \: required  \: solution \:  is  \: \boxed{ 18}.

Similar questions