Math, asked by aditya4699, 9 months ago

If x+y+z=6, x2 + y2 + z2=14 then what will be the value of x3 + y3 +z3-3xyz?

Getting trouble Adv.maths​

Answers

Answered by mysticd
5

 Given \: x + y + z = 6 \: ---(1) \\and \: x^{2} + y^{2} + z^{2} = 14 \: ---(2)

/* By Algebraic Identity */

 x^{2} + y^{2} +z^{2}+2xy+2yz+2zx = (x+y+z)^{2}

 \implies 14+ 2(xy+yz+zx) = 6^{2}

 \implies  2(xy+yz+zx) = 36 - 14

 \implies  2(xy+yz+zx) = 22

 \implies xy+yz+zx = \frac{22}{2}

 \implies xy+yz+zx= 11 \: ---(3)

 Now, \red{ x^{3} + y^{3} +z^{3} - 3xyz } \\= (x+y+z)(x^{2}+y^{2}+z^{2} - xy - yz - zx ) \\= (x+y+z)[x^{2}+y^{2}+z^{2} -( xy +yz +zx ) ]\\= 6[14 - 11] \\= 6 \times 3 \\= 18

Therefore.,

 \red{Value \:of x^{3} + y^{3} +z^{3} - 3xyz } \\\green { = 18 }

•••♪

Answered by Darkpit
0
Tyuushgsbw nwhwjwva s jw
Similar questions