. If x+ y + z = 8 and xy + yz + zx = 20 , find the value of
i) x^3+ y^3+z^3
-3xyz
ii) x^2 + y^2 + z^2
Answers
Answered by
0
Solution :
Given x + y + z = 8 ----( 1 )
xy + yz + zx = 20 ---( 2 )
i i ) x² + y² + z² = ( x + y + z )² -2( xy+yz+zx )
= 8² - 2 × 20
= 64 - 40
= 24 ---( 3 )
i ) x³ + y³ + z³ - 3xyz
= ( x+y+z )( x² + y² + z² - xy - yz - zx )
= ( x + y + z )[ x² + y² + z² -( xy + yz + zx ) ]
= 8 × [ 24 - 20 ]
= 8 × 4
= 32
•••••
=
Given x + y + z = 8 ----( 1 )
xy + yz + zx = 20 ---( 2 )
i i ) x² + y² + z² = ( x + y + z )² -2( xy+yz+zx )
= 8² - 2 × 20
= 64 - 40
= 24 ---( 3 )
i ) x³ + y³ + z³ - 3xyz
= ( x+y+z )( x² + y² + z² - xy - yz - zx )
= ( x + y + z )[ x² + y² + z² -( xy + yz + zx ) ]
= 8 × [ 24 - 20 ]
= 8 × 4
= 32
•••••
=
Similar questions