If x+y+z = 8 and xy+yz+zx =20, find the value of ----
Answers
Answered by
0
Answer:
x+y+z=8
xy+yz+zx=20
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
=> (8)^2=x^2+y^2+x^2+2(20)
=> 64=x^2+y^2+z^2+40
=> x^2+y^2+z^2=64-40=24
x^3+y^3+z^3-3xyz
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=8{24-(xy+yz+zx)}
=8(24-20)
=8×4
=32
Answered by
1
Answer:
Step-by-step explanation:
Given that,
x + y + z = 8 and xy + yz + zx = 20
( x + y + z )² = ( x² + y² + z² ) + 2 ( xy + yz + zx )
( 8 )² = ( x² + y² + z² ) + 2 ( 20 )
64 = ( x² + y² + z² ) + 40
64 - 40 = (x²+ y² + z²)
x² + y² + z² = 24
∴ x³ + y³ + z³ - 3xyz = ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
= ( 8 ) ( 24 - 20 )
= ( 8 ) ( 4 )
= 32 is the answer.
Similar questions
Math,
2 days ago
Biology,
2 days ago
English,
2 days ago
Math,
5 days ago
Social Sciences,
5 days ago
Physics,
9 months ago
Hindi,
9 months ago
Computer Science,
9 months ago