If x+y+z = 8 and xy + yz + zx = 20, find the value of x3 + y3 + z3 - 3xyz
Attachments:
Answers
Answered by
37
in this case 2 algebric Identity are used
Answered by
15
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
=>x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+zx)
=>x^2+y^2+z^2=(8)^2-2(20)
=>x^2+y^2+z^2=64-40
=>x^2+y^2+z^2=24
Now,
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=(x+y+z){(x^2+y^2+z^2)-(xy+yz+zx)}
=8×(24-20)
=8×4
=32
Hence,x^3+y^3+z^3-3xyx=32
=>x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+zx)
=>x^2+y^2+z^2=(8)^2-2(20)
=>x^2+y^2+z^2=64-40
=>x^2+y^2+z^2=24
Now,
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=(x+y+z){(x^2+y^2+z^2)-(xy+yz+zx)}
=8×(24-20)
=8×4
=32
Hence,x^3+y^3+z^3-3xyx=32
Avshukla:
good job dear
Similar questions
India Languages,
7 months ago
Computer Science,
7 months ago
Science,
7 months ago
English,
1 year ago
Math,
1 year ago
Physics,
1 year ago