Math, asked by astha191, 1 year ago

If (x+y+z) = 8 and xy + yz + zx = 20 , then , find x^3 + y^3 + z^3 - 3xyz.


Sachinarjun: hi

Answers

Answered by soopriya
2

 {(x + y + z)}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(xy + yz + zx)
 {8}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(20)
 {x}^{2}  +  {y}^{2}  +  {z}^{2} = 64 - 40
 {x}^{2}  +  {y }^{2}  +  {z}^{2} = 24
now,
 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz =  (x + y + z )( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx)
 = 8(24 - (20))
 = 8(24 - 20)
 = 8 \times 4
 = 32
Answered by Anonymous
1

Answer:

hope it helps a lot mate....

Attachments:
Similar questions