If x + y + z = 9 and xy + yz + zx = 26, find the value of x3 + y3 + z3 – 3xyz.
Answers
Answer: 27
Justification:
-> (x3 + y3 + z3 - 3xyz)
= (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
= (x + y + z) [(x + y + z)2 - 3(xy + yz + zx)]
= 9 x (81 - 3 x 26)
= (9 x 3)
= 27
The value of x³ + y³ + z³ - 3xyz comes out to be equal to 27.
Given:
x + y + z = 9
xy + yz + zx = 26
To Find:
The value of x³ + y³ + z³ - 3xyz.
Solution:
x + y + z = 9 - Equation (i)
xy + yz + zx = 26 - Equation (ii)
→ Squaring the equation (i) on both sides:
∴ (x + y + z)² = 9²
∴ x²+ y² + z² + 2xy + 2yz + 2zx = 81
∴ x²+ y² + z² + 2(xy + yz + zx) = 81
∴ x²+ y² + z² + 2(26) = 81
∴ x²+ y² + z² + 52 = 81
∴ x²+ y² + z² = 29 - Equation.(iii)
→ As we know: x³ + y³ + z³ - 3xyz = (x + y + z)(x²+ y² + z² - xy - yz - zx)
∴ x³ + y³ + z³ - 3xyz = (9)(29 - (xy - yz - zx))
∴ x³ + y³ + z³ - 3xyz = (9)(29 - 26)
∴ x³ + y³ + z³ - 3xyz = (9)(3)
∴ x³ + y³ + z³ - 3xyz = 27
Therefore the value of x³ + y³ + z³ - 3xyz comes out to be equal to 27.
#SPJ2