Math, asked by vc5019114, 9 months ago

if X+y+z=9and xy+yz+zx=23, find the value ofx^ 2+y^2+z^2​

Answers

Answered by Anonymous
1

Step-by-step explanation:

x + y + z = 9

x² + y² + z² = (x + y + z)² - 2(xy + yz + zx)

= (9)² - 2(23)

= 81 - 46 = 35

Answered by Anonymous
1

Given:\ x+y+z=8 \\ xy+yz+zx=20 \\ To \: find\: x^{3}+y^{3}+z^{3}-3xyz =?

Answer:

 x+y+z=8 --------eq 1 \\ xy+yz+zx= 20 ----eq2 \\ squaring\:both\: side \\ x^{2}+y^{2} +z^{2}+2xy+2yz +2zx \\ x^{2}+y^{2}+z^{2}+2(xy+yz +zx ) \\ x^{2}+y^{2}+z^{2}+2(20)=64 \\ x^{2}+y^{2}+z^{2}= 64-40 =24 \\by:\ eq2 \\ x^{3}+y^{3}+z^{3}-3xyz(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx) \\ x^{3}+y^{3}+ z^{3}-3xyz=8(24-20) \\ x^{3}+y^{3}+z^{3}+3xyx=8(4) \\ x^{3}+y^{3}+z^{3}-3xyz= 32 Answer.

Similar questions