If X,y,z are in continued proportion
then show that.
X-y upon x-z is equal to y upon y+z
lesson ratio n proportion
class 9
state board
Answers
Solution :
x, y and z are in continued proportion .
x : y :: y : z
> xz = y² .
To show :
( x - y )/( x - z ) = y/( y + z)
> ( x - y)( y + z ) = y( x - z)
> xy + xz - y² - yz = xy - yz
xy and yz gets cancelled .
> xy - y² = 0
> y² = xz
> x : y :: y : z
Thus , they are in continued proportion.
Hence Shown .
__________________________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
__________________________________________________
Question :-
If X, Y , Z are in continued proportion , then show that -
Given :-
X, Y, z are in continued proportion , it means that -
SolutioN :-
Now,
______________________________