Math, asked by tanishkatogi, 5 months ago

If X,y,z are in continued proportion
then show that.
X-y upon x-z is equal to y upon y+z

lesson ratio n proportion
class 9
state board ​

Answers

Answered by Saby123
81

Solution :

x, y and z are in continued proportion .

x : y :: y : z

> xz = y² .

To show :

( x - y )/( x - z ) = y/( y + z)

> ( x - y)( y + z ) = y( x - z)

> xy + xz - y² - yz = xy - yz

xy and yz gets cancelled .

> xy - y² = 0

> y² = xz

> x : y :: y : z

Thus , they are in continued proportion.

Hence Shown .

__________________________________________________

Additional Information :

(a + b)² = a² + 2ab + b²

(a + b)² = (a - b)² + 4ab

(a - b)² = a² - 2ab + b²

(a - b)² = (a + b)² - 4ab

a² + b² = (a + b)² - 2ab

a² + b² = (a - b)² + 2ab

2 (a² + b²) = (a + b)² + (a - b)²

4ab = (a + b)² - (a - b)²

ab = {(a + b)/2}² - {(a-b)/2}²

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(a + b)³ = a³ + 3a²b + 3ab² b³

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)( a² - ab + b² )

a³ + b³ = (a + b)³ - 3ab( a + b)

a³ - b³ = (a - b)( a² + ab + b²)

a³ - b³ = (a - b)³ + 3ab ( a - b )

__________________________________________________

Answered by ItzIshan
78

Question :-

If X, Y , Z are in continued proportion , then show that -

  •  \sf \frac{x - y}{x - z}  =  \frac{y}{y + z}  \\

Given :-

X, Y, z are in continued proportion , it means that -

  •  \sf \: x \ratio \: y \ratio \ratio \: y \ratio \:z

SolutioN :-

 \sf \: x \ratio \: y  \ratio\ratio  y\ratio \: z \\    \\  \sf \: we \: can \: write \: it \: as \mapsto\\  \\  \sf \implies \:  \frac{x}{y}  =  \frac{y}{z}  \\  \\  \sf \implies \:  x  \: \times \: z = y \times y \\  \\ \sf \implies \: xz =  {y}^{2}    \\  \\   \sf \implies \:  {y}^{2}  = xz -  -  -  -  (i)

Now,

  \sf \frac{x - y}{x - z}  =  \frac{y}{y + z} \\  \\  \implies \sf (x - y) \times (y + z) = y(x - z) \\  \\ \implies \sf \: xy + xz -  {y}^{2}  - yz = xy - yz \\  \\ \implies \sf \: \cancel{ xy} -  \cancel{xy} + xz - \cancel{ yz }-  {y}^{2}   +  \cancel{ yz} = 0 \\  \\ \implies \sf \: xz -  {y}^{2}   = 0\\  \\  \implies \sf \:  {y}^{2}  = xz \\  \\  \sf from \: equation \: (i)  \mapsto \\  \\ \implies \sf \: xz = xz \\  \\  \implies \boxed{ \bold{lhs = rhs}}

______________________________

Hope it will help you :)

Similar questions