Math, asked by guptaananya2005, 1 month ago

If x, y, z are three complex numbers such that
 |x| = 2 \: \: and \: \: |y| = 3 \: \: and \: \: |z| = 4 \: and \: |2x + 3y + 4z| = 4

Then find the value of |8yz + 27zx + 64xy|

Please don't spam.

Brainly Moderators

Brainly stars

Best User

Genius

Please answer.

Spammers please far away. ​​

Answers

Answered by NarendraChaudhari
1

Answer:

∣z

1

∣=9, ∣z

2

−(3+4i)∣=4

C

1

(0,0) radius r

1

=9

C

2

(3,4) radius r

2

=4

C

1

C

2

=∣r

1

−r

2

∣=5

∴ circle touches internally

∴ ∣z

1

−z

2

min

=0

hope it helps you

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that, x, y, z are complex numbers such that

\rm :\longmapsto\: |x| = 2

\rm :\longmapsto\: |y| = 3

\rm :\longmapsto\: |z| = 4

\rm :\longmapsto\: |2x + 3y + 4z| = 4

Now, Consider,

\rm :\longmapsto\: |8yz + 27zx + 64xy|

can be rewritten as

\rm \:  =  \: \bigg |\dfrac{8xyz}{x}  + \dfrac{27xyz}{y}  + \dfrac{64xyz}{z} \bigg |

can be further rewritten as by taking xyz common

\rm \:  =  \: \bigg |xyz\bigg(\dfrac{8}{x}  + \dfrac{27}{y}  + \dfrac{64}{z}\bigg) \bigg |

We know,

If x and y are two complex numbers then

\red{ \boxed{ \sf{ \: |xy| \:  =  \:  |x| \:  |y| \: }}}

So, using this,

\rm \:  =  \:  |x| |y| |z|\bigg |\dfrac{8}{x}  + \dfrac{27}{y}  + \dfrac{64}{z} \bigg |

\rm \:  =  \:2 \times 3 \times 4\bigg |\dfrac{8}{x}  + \dfrac{27}{y}  + \dfrac{64}{z} \bigg |

\red{\bigg \{ \because \: |x| = 2, \:  |y| = 3, \:  |z| = 4\bigg \}}

\rm \:  =  \:24\bigg |\dfrac{8}{x}  + \dfrac{27}{y}  + \dfrac{64}{z} \bigg |

Now, we know that

\red{ \boxed{ \sf{ \:z \bar{z} \:  =  { |z| }^{2}\bf\implies \:\dfrac{1}{z}  = \dfrac{ \bar{z}}{ { |z| }^{2} } }}}

So, applying this, we get

\rm \:  =  \:24\bigg |\dfrac{8 \bar{x}}{{ |x| }^{2}}  + \dfrac{27\bar{y}}{{ |y| }^{2}}  + \dfrac{64\bar{z}}{ { |z| }^{2} } \bigg |

\rm \:  =  \:24\bigg |\dfrac{8 \bar{x}}{4}  + \dfrac{27\bar{y}}{9}  + \dfrac{64\bar{z}}{16} \bigg |

\rm \:  =  \: 24 |2\bar{x} + 3\bar{y} + 4\bar{z}|

We know,

\red{ \boxed{ \sf{ \:\bar{x} + \bar{y} = \overline{x + y}}}}

So, using this, we get

\rm \:  =  \: 24 | \overline{2x + 3y + 4z}|

\red{ \boxed{ \sf{ \: |z| =  |\bar{z}|}}}

So, using this, we get

\rm \:  =  \: 24 |{2x + 3y + 4z}|

\red{\bigg \{ \because \:  |2x + 3y + 4z| = 4 \bigg \}}

\rm \:  =  \: 24 \times 4

\rm \:  =  \: 96

Similar questions