If x, y, z be all positive acute angles, then find the least value of tan x (cot y + cot z) + tan y (cot z + cotx) +
tan z (cot x + cot y).
y)
Answers
Answered by
1
Answer:
If a number m is positive so
m+
m
1
≥2
So, we will use this rule here,
tanx(coty+cotz)+tany(cotz+cotx)+tanz(cotx+coty)
=tanx(
tany
1
+
tanz
1
)+tany(
tanz
1
+
tanx
1
)+tanz(
tanx
1
+
tany
1
)
=
tany
tanx
+
tanz
tanx
+
tanz
tany
+
tanx
tany
+
tanx
tanz
+
tany
tanz
=(
tany
tanx
+
tanx
tany
)+(
tanz
tanx
+
tanx
tanz
)+(
tanz
tany
+
tany
tanz
)
=(a+
a
1
)+(b+
b
1
)+(c+
c
1
)
where a=
tany
tanx
,b=
tanz
tany
,c=
tanx
tanz
≥2+2+2(from above)
≥6
So, minimum value is 6
Similar questions
English,
1 month ago
Science,
1 month ago
Math,
1 month ago
Computer Science,
2 months ago
India Languages,
2 months ago
Physics,
9 months ago