if x ,y,z sre integers , y+z-x=constant and (z+x-y)(x+y-z) varies yz then prove that (x+y+z)variesyz
Answers
Answered by
29
As given , x, y and z are integers.
y + z - x= constant
y + z- x = k
(z+x-y)(x+y-z) varies y z.
→(x+z-y)[x-(z-y)]= P y z
⇒ x² - (z-y)²= P y z→→→→ Using Identity A²- B²=(A-B)(A+B)
⇒x² - (z-y)²- 4 y z= P y z - 4 y z
⇒x²- z²-y²+2 y z - 4 y z=(P-4) y z
⇒x²- (y+z)²= M y z⇒⇒P-4= M
⇒(x-y-z)(x+y+z)=M y z-----(1)→→→→ Using Identity A²- B²=(A-B)(A+B)
As , y + z - x= k
x-y-z= -k= N
Putting the value of , x-y-z in equation (1)
N (x+y+z)=M y z
x+y+z= y z
x + y + z= D y z, where = D
Hence, (x+y+z)varies yz.
Similar questions