Math, asked by Surya1690, 10 months ago

If x1 < x2 and x1, x2 are the roots of x2

– 26x + 120 = 0 then the value of
√x1+√x2​

Answers

Answered by steffiaspinno
0

√X+√X₂ = √26

Explanation:

Given Equation:

x2 – 26x + 120 = 0

To find:

The roots X₁ and X₂

Formula:

α  = \frac{-b+\sqrt{b^{2}-4ac } }{2a}

β = \frac{-b-\sqrt{b^{2}-4ac } }{2a}

From the equation,

a = coefficient of x²

b = coefficeint of x

c = constant

a = 1

b = -26

c = 120

α  = \frac{-b+\sqrt{b^{2}-4ac } }{2a}

α  = \frac{-(-26)+\sqrt{(-26)^ {2}-4(1)(120) } }{2(1)}

α  = \frac{26+\sqrt{676-4(120) } }{2}

α  = \frac{26+\sqrt{676-480 } }{2}

α  = \frac{26+\sqrt{196 } }{2}

α  = \frac{26+14 }{2}

α  = \frac{40}{2}

α  = 20

β = \frac{-b-\sqrt{b^{2}-4ac } }{2a}

β = \frac{-(-26)-\sqrt{(-26)^ {2}-4(1)(120) } }{2(1)}

β  = \frac{26-\sqrt{676-4(120) } }{2}

β = \frac{26-\sqrt{676-480 } }{2}

β  = \frac{26-\sqrt{196 } }{2}

β = \frac{26-14 }{2}

β  = \frac{12}{2}

β = 6

The roots are 20 and 6

X₁ = 20

X₂ = 6

√X+√X₂ = √20 + √6

√X+√X₂ = √26

Similar questions