. If x² +1/
2
= 7, find the values of :
(i) x-1/x
() x +1/x
(ii) 3x ²-3/x²
Answers
I think question is like this
If , x² + 1 / x² = 7 , then find the values,
(1) x - 1 / x
(2) x + 1/x
(3) 3x² - 3 / x²
Solution---> ATQ, x² + 1 / x² = 2
We have an identity
( a - b )² = a² + b² - 2ab , using it we get
(1) ( x - 1 / x )² = ( x )² + ( 1 / x )² - 2 ( x ) ( 1 / x )
= x ² + 1 / x² - 2
= ( x² + 1 / x² ) - 2
= ( 7 ) - 2
( x - 1 / x )² = 5
x - 1 / x = √5
(2) We have an identity,
( a + b )² = a² + b² + 2ab , using it , we get
( x + 1 / x )² = ( x )² + ( 1 / x )² + 2 ( x ) ( 1 / x )
= x² + 1 / x² + 2
= ( x² + 1 / x² ) +2
= ( 7 ) + 2
( x + 1 / x )² = 9
x + 1 / x = 3
(3) 3 x² - 3 / x² = 3 ( x² - 1 / x² )
= 3 { ( x )² - ( 1 / x )² }
We have an identity ,
a² - b² = ( a + b ) ( a - b ) , applying it here we get
= 3 ( x + 1 / x ) ( x - 1 / x )
Putting value of ( x + 1 / x ) and ( x - 1/ x ) , we get
= 3 ( 3 ) ( √5 )
3 x² - 3 / x² = 9 √5