Math, asked by hhuz, 1 year ago

if x² +(1/x)²= 7,
then find the value of x² - (1/x)²


source : advisor textbook ( class 8 )


__help this kid plz¡

Answers

Answered by Anonymous
96

Answer :

x² - 1/x² = 3√5

\rule{150}2

Given:-

  • \sf{x^2\:+\: \bigg(\dfrac{1}{x}  \bigg)^{2} \:=\:7}

Find:-

\sf{x^2\:-\: \bigg(\dfrac{1}{x}  \bigg)^{2}}

Solution:-

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:=\:7}

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:=\:9\:-\:2}

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:+\:2\:=\:9}

(a + b)² = a² + b² + 2ab

\implies\:\sf{\bigg(x\:+\:\dfrac{1}{x} \bigg)^2\:=\:9}

\implies\:\sf{x\:+\:\dfrac{1}{x}\:=\:\sqrt{9}}

\implies\:\sf{x\:+\:\dfrac{1}{x}\:=\:3} ....(1)

We have to find \sf{x^2\:-\:\dfrac{1}{x^2}}

\implies\:\sf{x^2\:+\:\dfrac{1}{x^2}\:-\:\dfrac{2x}{x}=\:7\:-\:2}

\implies\:\sf{\bigg(x\:-\:\dfrac{1}{x}\bigg)^2\:=\:5}

\implies\:\sf{x\:-\:\dfrac{1}{x}\:=\:\sqrt{5}} ....(2)

(a + b) (a - b) = a² - b²

\implies\:\sf{\bigg(x\:+\:\dfrac{1}{x}\bigg)\bigg(x\:-\:\dfrac{1}{x}\bigg)\:=\:3\sqrt{5}}

\implies\:\sf{x^2\:-\:\dfrac{1}{x^2}\:=\:3\sqrt{5}}


StarrySoul: Awesome! :D
Anonymous: Dhanyavad
ShivamKashyap08: Perfect !
Anonymous: Theku
Answered by Anonymous
61

Solution :-

Given :-

x² + ( 1/x )² = 7

To solve this question we can think of the identity a² - b² = (a + b)(a - b)

Here according to the question a = x, b = 1/x

So, find the (a + b) i.e x + ( 1/x ) and (a - b) i.e x - ( 1/x )

Finding the value of (x + 1/x)

 \tt  {x}^{2}  +  \bigg( \dfrac{1}{x} \bigg)^{2}   = 7 \\\\

Adding 2(x)(1/x) on both sides

 \tt  \implies {x}^{2}  +  \bigg( \dfrac{1}{x} \bigg)^{2}  + 2(x) \bigg( \dfrac{1}{x}  \bigg)  = 7 + 2(x) \bigg( \dfrac{1}{x}  \bigg) \\\\\\

 \tt  \implies   \bigg(x +  \dfrac{1}{x} \bigg)^{2}  =9 \\\\

[ Because, a² + b² + 2ab = (a + b)² ]

 \tt  \implies  x +  \dfrac{1}{x}   = \sqrt{9}  \\\\\\

 \tt  \implies  x +  \dfrac{1}{x}   = 3  \\\\\\

Finding the value of (a - b) i.e x - ( 1/x )

 \tt  {x}^{2}  +  \bigg( \dfrac{1}{x} \bigg)^{2}   = 7 \\\\

Subtracting 2(x)(1/x) on both sides

 \tt  \implies {x}^{2}  +  \bigg( \dfrac{1}{x} \bigg)^{2}   -  2(x) \bigg( \dfrac{1}{x}  \bigg)  = 7  -  2(x) \bigg( \dfrac{1}{x}  \bigg) \\\\\\

 \tt  \implies {x}^{2}  +  \bigg( \dfrac{1}{x} \bigg)^{2}   -  2(x) \bigg( \dfrac{1}{x}  \bigg)  = 7  -  2 \\\\\\

 \tt  \implies  \bigg( x - \dfrac{1}{x} \bigg)^{2} = 5 \\\\

[ Because, a² + b² - 2ab = (a - b)² ]

 \tt  \implies  x - \dfrac{1}{x}  =  \sqrt{5} \\

Now, finding x² - ( 1/x )²

We know that a² - b² = (a + b)(a - b)

Now substituting the values

 \tt  \implies   {x}^{2}   -  \bigg( \dfrac{1}{x} \bigg)^{2}   =  3 \sqrt{5} \\

Hence, the value of x² - ( 1/x )² is 3√5.


Anonymous: Great answer
Anonymous: Thanks :)
StarrySoul: Nice!
ShivamKashyap08: Awesome!
Similar questions