Math, asked by mohitvbafna, 11 months ago

- If x² + 1/ x²= 18, find the value of x³ - 1/x³​

Answers

Answered by tahseen619
12

76

Step-by-step explanation:

Given:

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 18

To find:

 {x}^{3}  -  \dfrac{1}{ {x}^{3} }

Solution:

 {x}^{2}  +  \dfrac{1}{ {x}^{2}  } = 18

[subtracting 2 from both side ]

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 = 18 - 2 \\  \\  {x}^{2}  - 2.x. \frac{1}{x}  +  \frac{1}{ {x}^{2} }   = 16

[Using a² - 2ab + b² = (a - b)²]

 {(x -  \frac{1}{ {x}^{} }) }^{2}   =  16\\   {(x -  \frac{1}{x} )}^{2}  =  {(4)}^{2}  \\  \\ x -  \frac{1}{x}  = 4 \:  \:  \:  \:  ...............   \{ i\}

[cubing both side]

 {(x -  \dfrac{1}{x}) }^{3}  =  {(4)}^{3}  \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }   - 3.x. \frac{1}{x} (x -  \frac{1}{x} ) = 64 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3. \cancel{x}. \frac{1}{\cancel{x}} (4) = 64 \:  \:  \:  \:  \: (from \:  \: i \: ) \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 12 = 64 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 64 + 12 \\  \\   {x}^{3} -  \frac{1}{ {x}^{3} }  = 76

Hence, The required answer is 76.

Answered by nr123456
0

Answer:

here is your answer

Attachments:
Similar questions