Math, asked by tutaudayani, 4 months ago

if x²+ 1/ x² =23 evaluate x+1/x​

Answers

Answered by gfmathfan1729
1

Answer:

If x is positive, then x+\frac{1}{x}=5. But if x is negative, x+\frac{1}{x}=-5.

So, the answer could either be 5 or -5.

Step-by-step explanation:

Notice that (x+\frac{1}{x})^2=x^2+2x(\frac{1}{x})+(\frac{1}{x})^2=x^2+\frac{1}{x^2}+2.

Since we know that x^2+\frac{1}{x^2} =23, we can substitute to get:

(x+\frac{1}{x})^2=23+2

Simplifying the right hand side gives:

(x+\frac{1}{x})^2=25

We can now take the square root of both sides to get that:

x+\frac{1}{x}=5 or x+\frac{1}{x}=-5.

You didn't give enough information to tell which one, though. :)

Footnote

If we know that x is positive, then we can deduce that x+\frac{1}{x} would also be positive, so the answer would've been just 5.

If we know that x is negative, then we can deduce that x+\frac{1}{x} would also be negative, so the answer would've been just -5.

Hope this helps, and let me know if you have any further questions! :)

Similar questions