Math, asked by Shailenderkumarsingh, 7 months ago

if x2 +1/x2 = 27 then find the value of x3 - 1/x3​

Answers

Answered by kithu13
3

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 27 \\  \\  \\  {(x +  \frac{1}{ x } )}^{2}  = {x}^{2}  +  \frac{1}{ {x}^{2} }   +  \frac{2x}{x}  \\  \\ {(x +  \frac{1}{ x } )}^{2} = 27 + 2 \\  \\ x +  \frac{1}{x}  =  \sqrt{29}  \\   \\  ({x}^{2}  +  \frac{1}{ {x}^{2} })  \times (x +  \frac{1}{x} ) = 27 \times  \sqrt{29}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  +  \frac{x}{ {x}^{2} }  +  \frac{ {x}^{2} }{x}  = 145.4 \\  \\ {x}^{3}  +  \frac{1}{ {x}^{3} } +  \frac{1}{x}  + x = 145.4 \\  \\ {x}^{3}  +  \frac{1}{ {x}^{3} }  +  \sqrt{29}  = 145.4 \\  \\ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 145.4 -  \sqrt{29}   \\  \\ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 140

Hope this will help...

Please mark as brainliest...

#FOLLOW

Similar questions