Math, asked by nestioficgaming, 7 months ago

If x²+1/x²= 7 find the value of x3+ 1/x3

Answers

Answered by llxdevilgirlxll
8

 \huge \bf  \: Answer

 \bf \:  \bigg(x +   \frac{1}{x}  \bigg)^{2}

 =  >  \bf  {x}^{2}  +  \frac{1}{ {x}^{2}  } \:  + 2

  =  > \bf  \bigg(  \frac  {x + 1}{x} \bigg)^{2}  = 9

 \ =  >  \bf \: x \:  +  \frac{1}{x}  = 3

 \bf \: now

 \bf \: Now ,

 \bf \bigg( \frac{x + 1}{x}  \bigg) ^{3}

 =  >  \bf \:  {x}^{3}  +  \frac{1} { {x}^{3} } \:  + 3 \bigg(x +  \frac{1}{x}  \bigg)

  =  >  \bf \: 27 \:   \:  =   \: {x}^{3} \:  +  \:  \frac{1}{ { x }^{3} }  \:   + 9

 \bf \: Or,

 \bf \:  {x}^{3}  +  \frac{1}{ {x}^{3} }

 =  >  \bf \: 27 \:  - \:  9 \: = 18

Answered by Mysteryboy01
0

\huge\fbox \red{✔Que} {\colorbox{crimson}{est}}\fbox\red{ion✔}

The Question is Give below 

\huge\color{Red}\boxed{\colorbox{black}{♡Answer ♡}}

The Answer is Attachment

Attachments:
Similar questions