Math, asked by Mananbudhiraja1, 1 year ago

if x²+1/x² is 62.find the value of x³+1/x³.

Answers

Answered by Angel9915
71
x2+1/x2=62
(x+1/x)2-(2×x×1/x)=62
(x+1/x)2=64
x+1/x=8
x3+1/x3=(x+1/x)3-3×x×1/x (x+1/x)
=(8)3-(3×8)
=512-24
=488
Answered by harendrachoubay
43

x^{3}+\dfrac{1}{x^3}=488

Step-by-step explanation:

We have,

x^{2}+\dfrac{1}{x^2}=62

To find, the value ofx^{3}+\dfrac{1}{x^3}=?

(x+\dfrac{1}{x})^{2} =x^{2}+\dfrac{1}{x^2}+2

(x+\dfrac{1}{x})^{2}=64

(x+\dfrac{1}{x})^{2}=8^{2}

x+\dfrac{1}{x}=8

(x+\dfrac{1}{x})^{3} =x^{3}+\dfrac{1}{x^3}+3.x.\dfrac{1}{x}(x+\dfrac{1}{x})

(x+\dfrac{1}{x})^{3} =x^{3}+\dfrac{1}{x^3}+3(x+\dfrac{1}{x})

x^{3}+\dfrac{1}{x^3}=(x+\dfrac{1}{x})^{3}-3(x+\dfrac{1}{x})

x^{3}+\dfrac{1}{x^3}=(8)^{3}-3(8)=512-24

x^{3}+\dfrac{1}{x^3}=488

Hence, x^{3}+\dfrac{1}{x^3}=488

Similar questions