Math, asked by arya9647, 1 year ago

If x2 + 2x-3 is factor of x4+6x3+2ax2+bx-3a find the value of a nd b

Answers

Answered by Anonymous
25

Answer:

a=5

b=-2

Step-by-step explanation:

​now first we find  the value of x  

x​2​​+2x−3​

x​2​​+3x−x−3​

x(x+3)−1(x+3)

​(x−1)(x+3)

​x=1

​x=−3​

=======================================

now put the value of x in f(x)​

f (x) = x 4 + 6 x 3 + 2 a x 2 + b x - 3 a

=======================================

when x = 1 then

f(×)=1+6+2a+b-3a

f(×)=7-a+b.......eqn1

----------------------------------------------------------------------------------------

when x = -3

f(×)=(-3)^4+6(-3)^3+2a(-3)^2+b(-3)-3a

f(×)=81-162+18a-3b-3a

f (×) = 15a - 3b - 81....eqn2

-------------------------------------------------------------------------------------

from eqn1 and eqn2

multiply eqn 1 with 3..we have

3b-3a+21

----------------------------------------------------------------------------------------------------

add this eqn in eqn2

12a-60=0

12a=60

a = 5

------------------------------------------------------------------------------------------------------

put value of a in eqn1...we have

7-5+b=0

b = -2

======================================

THANK UH

HOPE THIS WILL HELP UH


Blaezii: Stop It!
Anonymous: great :)
Anonymous: thank uh
Anonymous: thanks
Answered by Blaezii
8

Answer:

A = 5

B = -2

Step-by-step explanation:

>>>​x​2​​+2x−3​

>>>x​2​​+3x−x−3​

>>>x(x+3)−1(x+3)

>>>​(x−1)(x+3)

>>>>>​x=1

>>>>​x=−3​

Put value of x in f(x)​

f(x)=x4+6x3+2ax2+bx-3a

=====================

When x=1 then:

f(×)=1+6+2a+b-3a

f(×)=7-a+b.......eqn1

when  x =  -3

f(×)=(-3)^4+6(-3)^3+2a(-3)^2+b(-3)-3a

f(×)=81-162+18a-3b-3a

f(×)=15a-3b-81....eqn2

From, eqn1 and eqn2

Multiply, eqn 1 with 3..we have

3b-3a+21

Add this eqn in eqn2

12a-60=0

12a=60

a=5

put value of a in eqn1...we have

7-5+b=0

b= -2

Verify answer  by putting value of a and b in f(×)

Hope My answer Helpz You!!


Anonymous: nice answer well explained
Similar questions