Math, asked by Anonymous, 1 year ago

if x²-4x+1=0 then find the x³+1/x³​

Answers

Answered by Thatsomeone
3

\textbf {\underline {\underline {ANSWER }}}

 {x}^{2}  - 4x + 1 = 0 \\  \\  \\  {b}^{2}  - 4ac =  {( - 4)}^{2}  - 4 \\  \\  \\  = 16 - 4 \\  \\  \\  = 12 \\  \\  \\ x =  \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \\  =   \frac{ - ( - 4) +  -  \sqrt{12} }{2}  \\  \\  \\  =  \frac{4 +  - 2 \sqrt{3} }{2}  \\  \\  \\ x = 2 +  \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \: 2 -  \sqrt{3}  \\  \\  \\     x +  \frac{1}{x}  = 2 +  \sqrt{3}  +  \frac{1}{2 +  \sqrt{3} }  \\  \\  \\  = 2 +  \sqrt{3}  +  \frac{ 2 -  \sqrt{3} }{(2 -  \sqrt{3)}(2 +  \sqrt{3}  )}  \\  \\  \\  = 2 +  \sqrt{3}  +  \frac{2 -  \sqrt{3} }{ - 1}  \\  \\  \\  = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\  \\  = 2 \sqrt{3}  \\  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  =   {(x +  \frac{1}{x} )}^{3}  - 3(x +  \frac{1}{x} ) \\  \\  \\  = {(2 \sqrt{3} )}^{3}    - 3(2 \sqrt{3)}  \\  \\  \\  = 72 \sqrt{3}   - 6 \sqrt{3}  \\  \\  \\  = 66 \sqrt{3}  \\  \\  \\ x = 2 -  \sqrt{3}  \\  \\  \\ x +  \frac{1}{x}  = 2 -  \sqrt{3}  +  \frac{1}{2 -  \sqrt{3} }  \\  \\  \\  = 2 -  \sqrt{3}  +  \frac{2  +  \sqrt{3} }{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }  \\  \\  \\  = 2 -  \sqrt{3}  - 2 -  \sqrt{3}  \\  \\  \\  = 0

Thanks


Anonymous: answer is wrong
Answered by UltimateMasTerMind
14

Solution:-

Given Quadratic Polynomial Equation:-

=) x² - 4x + 1 = 0

=) x² - 4x = -1

=) x ( x - 4) = -1

=) x -4 = -1/x

=) x + 1/x = 4 ______________(1)

Now,

Taking Cube on both the sides. we get,

=) ( x + 1/x )³ = 4³

=) x³ + (1/x)³ + 3.x.1/x. ( x + 1/x) = 64

=) x³ + 1/x³ + 3 ( x + 1/x ) = 64

=) x³ + 1/x³ + 3 × 4 = 64 [ From eq(1). ]

=) x³ + 1/x³ = 64 - 12

=) x³ + 1/x³ = 52

Hence,

x³ + 1/x³ = 52

Identity Used:-

  • ( a + b)³ = a³ + b³ + 3ab ( a + b).
Similar questions